HIGHER SCHOOL CERTIFICATE EXAMINATION

General Mathematics

FORMULAE SHEET

Area of an annulus

$$A = \pi \left(R^2 - r^2 \right)$$

R = radius of outer circle

r = radius of inner circle

Area of an ellipse

 $A = \pi ab$

a = length of semi-major axis

b = length of semi-minor axis

Area of a sector

$$A = \frac{\theta}{360} \pi r^2$$

 θ = number of degrees in central angle

Arc length of a circle

$$l = \frac{\theta}{360} 2\pi r$$

 θ = number of degrees in central angle

Simpson's rule for area approximation

$$A \approx \frac{h}{3} \Big(d_f + 4 d_m + d_l \Big)$$

h = distance between successivemeasurements

 d_f = first measurement

 d_m = middle measurement

 d_l = last measurement

Surface area

Sphere

$$A = 4\pi r^2$$

Closed cylinder

$$A = 2\pi rh + 2\pi r^2$$

r = radius

h = perpendicular height

Volume

Cone

$$V = \frac{1}{3}\pi r^2 h$$

Cylinder
$$V = \pi r^2 h$$

Pyramid
$$V = \frac{1}{3}Ah$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

r = radius

h = perpendicular height

A =area of base

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Area of a triangle

$$A = \frac{1}{2}ab\sin C$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

or

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

FORMULAE SHEET

Simple interest

I = Prn

P = initial quantity

r = percentage interest rate per period, expressed as a decimal

n = number of periods

Compound interest

 $A = P(1+r)^n$

A = final balance

P = initial quantity

n =number of compounding periods

r = percentage interest rate per compounding period, expressed as a decimal

Future value (A) of an annuity

$$A = M \left\{ \frac{(1+r)^n - 1}{r} \right\}$$

M =contribution per period, paid at the end of the period

Present value (N) of an annuity

$$N = M \left\{ \frac{(1+r)^n - 1}{r(1+r)^n} \right\}$$

or

$$N = \frac{A}{(1+r)^n}$$

Straight-line formula for depreciation

$$S = V_0 - Dn$$

S = salvage value of asset after n periods

 V_0 = purchase price of the asset

D =amount of depreciation apportioned per period

n = number of periods

Declining balance formula for depreciation

$$S = V_0 (1-r)^n$$

S = salvage value of asset after n periods

r = percentage interest rate per period, expressed as a decimal

Mean of a sample

$$\bar{x} = \frac{\sum x}{n}$$

$$\bar{x} = \frac{\sum fx}{\sum f}$$

 $\bar{x} = \text{mean}$

x = individual score

n = number of scores

f = frequency

Formula for a z-score

$$z = \frac{x - \overline{x}}{s}$$

s = standard deviation

Gradient of a straight line

$$m = \frac{\text{vertical change in position}}{\text{horizontal change in position}}$$

Gradient-intercept form of a straight line

y = mx + b

m = gradient

b = y-intercept

Probability of an event

The probability of an event where outcomes are equally likely is given by:

 $P(\text{event}) = \frac{\text{number of favourable outcomes}}{\text{total number of outcomes}}$